基于SQL Server OS的任务调度机制详解
SQL Server OS是在Windows之上,用于服务SQL Server的一个用户级别的操作办法系统层次。它将操作办法系统部分的功能从整个SQL Server引擎中抽象出来,单独形成一层,以便为存储引擎,网站数据库层面的任务调度的起源是ACM上的一篇名为“Operating System Support for Database Management”。但是对于Windows来说,在操作办法系统层面专门加入支,在Windows NT4之后,Windows任务调度是抢占式的,也就是说Windows任务是根据任务的优先级和时间片来决定。假如如果一个任务的时间片用完,或是有更高优先级的任务正在等待,那么操作办法系统可以强,但是对于SQL Server来说,这种非合作式的、基于时间片的任务调度机制就不那么合适了。假如如果SQL Server使用Windows内的任务调度机制来进行任务调度的话,Windows不会根据SQL S,而对于SQL Server OS来说,线程调度采用的合作模式而不是抢占模式。这是因为这些网站数据库内的任务都在SQL Server这个SandBox之内,SQL Server充分相信其内线程,所以除非线程,SQL Server决定哪一个时间点哪一个线程运行,是通过一个叫Scheduler的东西进行的,下面让咱们来看Scheduler。,SQL Server中每一个逻辑CPU都有一个与之对应的Scheduler,只有拿到Scheduler所有权的任务才允许被执行,Scheduler可以看做一个队SQLOS来说的逻辑CPU。您可以通过s,我的笔记本是一个i7四核8线程的CPU,对应的,可以看到除了DAC和运行系统任务的hIDDEN Scheduler,剩下的Scheduler一共8个,每个对应一个逻辑CPU,用于处理内部Task。当然,此时,无需重启实例就能看到4个Scheduler被Offline,如图3所示:,一般来说,除非您的站点服务器上运行其他实例或程序,否则不需要控制Affinity。,在图1中,咱们还注意到,除了Visible的Scheduler之外,还有一些特殊的Scheduler,这些Scheduler的ID都大于255,这类Scheduler都用于系统内部使用,比如说资源管理,这意味着对于一个比较长的查询,可以前半部分在CPU0上执行,而后半部分在CPU1上执行。,另外,在每一个Scheduler上,同一时间只能有一个Worker运行,所有的资源都就绪但没有拿到Scheduler,那么这个Worker就处于Runnable状态。下面让咱们来看一看Worker。,每一个Worker可以看做是对应一个线程(或纤程),Scheduler不会直接调度线程,而是调度Worker。Worker会随着负载的增加而增加,换句话说,Worker是按需增加,直到增加到最大数字。,假如如果是自动配置,那么SQL Server的最大工作线程数量可以在sys.dm_os_sys_info中看到,如图5所示。,Worker实际上会对应Windows上的一个线程,并与某个特定Scheduler绑定,每一个Worker只要开始执行Task,除非Task完成,否则Worker永远不会放弃这个Task,假如如果一个Ta,此外,同一个连接内的多个Batch之间倾向于使用同一个Worker,比如第一个Batch使用了Worker 100,那么第二个Batch也同样倾向于是用Worker 100,但这并不绝对。,正在运行的任务所是用的Worker,咱们可以通过DMV sys.dm_exec_requests查看正在运行的任务,其中的Task_Address列可以看到正在运行的Task,再通过sys.dm_os,SQL Server会为每一个Worker保留大约2M左右的内存,对于每一个Scheduler上所能有的Worker数量是站点服务器的最大Worker数量/在线的Scheduler,每一个Schedule,那么当一个Scheduler空闲超过15分钟,或是Windows面临内存压力时。SQL Server就会尝试Trim这个Worker池来释放被Worker所占用的内存。,Task是Worker上运行的最小任务单元。只能拿到Worker的Task才能够运行。咱们可以看下面一个简单的例子,如具体相关代码1所示。,SELECT @@VERSION goSELECT @@SPID go
开始
这是去年的问题了,今天在整理邮件的时候才发现这个问题,感觉顶有意思的,特记录下来。
在表RelationGraph中,有三个字段(ID,Node,RelatedNode),其中Node和RelatedNode两个字段描述两个节点的连接关系;现在要求,找出从节点"p"至节点"j",最短路径(即经过的节点最少)。
图1.
解析:
了能够更好的描述表RelationGraph中字段Node和 RelatedNode的关系,我在这里特意使用一个图形来描述,
如图2.
图2.
在图2,可清晰的看出各个节点直接如何相连,也可以清楚的看出节点"p"至节点"j"的的几种可能路径。
从上面可以看出第2种可能路径,经过的节点最少。
为了解决开始的问题,我参考了两种具体相关方法,
第1具体相关方法是,
参考单源最短路径算法:
图3.
第2具体相关方法是,
针对第1种具体相关方法的改进,就是采用多源点具体相关方法,这里就是以节点"p"和节点"j"为中心向外层扩展,直到两圆外切点,如图4. :
图4.
实现:
在接下来,我就描述在SQL Server中,如何实现。当然我这里采用的前面说的第2种具体相关方法,以"P"和"J"为始点像中心外层层扩展。
这里提供有表RelactionGraph的create& Insert数据的脚本:
复制具体相关代码 具体相关代码如下:
use TestDB
go
if object_id('RelactionGraph') Is not null drop table RelactionGraph
create table RelactionGraph(ID int identity,Item nvarchar(50),RelactionItem nvarchar(20),constraint PK_RelactionGraph primary key(ID))
go
create nonclustered index IX_RelactionGraph_Item on RelactionGraph(Item) include(RelactionItem)
create nonclustered index IX_RelactionGraph_RelactionItem on RelactionGraph(RelactionItem) include(Item)
go
insert into RelactionGraph (Item, RelactionItem ) values
('a','b'),('a','c'),('a','d'),('a','e'),
('b','f'),('b','g'),('b','h'),
('c','i'),('c','j'),
('f','k'),('f','l'),
('k','o'),('k','p'),
('o','i'),('o','l')
go
编写一个存储过程up_GetPath
复制具体相关代码 具体相关代码如下:
use TestDB
go
--Procedure:
if object_id('up_GetPath') Is not null
Drop proc up_GetPath
go
create proc up_GetPath
(
@Node nvarchar(50),
@RelatedNode nvarchar(50)
)
As
set nocount on
declare
@level smallint =1, --当前搜索的深度
@MaxLevel smallint=100, --最大可搜索深度
@Node_WhileFlag bit=1, --以@Node作为中心进行搜索时候,作为能否循环搜索的标记
@RelatedNode_WhileFlag bit=1 --以@RelatedNode作为中心进行搜索时候,作为能否循环搜索的标记
--假如如果直接找到两个Node存在直接关系就直接返回
if Exists(select 1 from RelationGraph where (Node=@Node And RelatedNode=@RelatedNode) or (Node=@RelatedNode And RelatedNode=@Node) ) or @Node=@RelatedNode
begin
select convert(nvarchar(2000),@Node ' --> ' @RelatedNode) As RelationGraphPath,convert(smallint,0) As StopCount
return
end
--
if object_id('tempdb..#1') Is not null Drop Table #1 --临时表#1,存储的是以@Node作为中心向外扩展的各节点数据
if object_id('tempdb..#2') Is not null Drop Table #2 --临时表#2,存储的是以@RelatedNode作为中心向外扩展的各节点数据
create table #1(
Node nvarchar(50),--相对源点
RelatedNode nvarchar(50), --相对目标
Level smallint --深度
)
create table #2(Node nvarchar(50),RelatedNode nvarchar(50),Level smallint)
insert into #1 ( Node, RelatedNode, Level )
select Node, RelatedNode, @level from RelationGraph a where a.Node =@Node union --正向:以@Node作为源查询
select RelatedNode, Node, @level from RelationGraph a where a.RelatedNode = @Node --反向:以@Node作为目标进行查询
set @Node_WhileFlag=sign(@@rowcount)
insert into #2 ( Node, RelatedNode, Level )
select Node, RelatedNode, @level from RelationGraph a where a.Node =@RelatedNode union --正向:以@RelatedNode作为源查询
select RelatedNode, Node, @level from RelationGraph a where a.RelatedNode = @RelatedNode --反向:以@RelatedNode作为目标进行查询
set @RelatedNode_WhileFlag=sign(@@rowcount)
--假如如果在表RelationGraph中找不到@Node 或 @RelatedNode 数据,就直接跳过后面的While过程
if not exists(select 1 from #1) or not exists(select 1 from #2)
begin
goto While_Out
end
while not exists(select 1 from #1 a inner join #2 b on b.RelatedNode=a.RelatedNode) --判断是否出现切点
and (@Node_WhileFlag|@RelatedNode_WhileFlag)>0 --判断是否能搜索
And @level<@MaxLevel --控制深度
begin
if @Node_WhileFlag >0
begin
insert into #1 ( Node, RelatedNode, Level )
--正向
select a.Node,a.RelatedNode,@level 1
From RelationGraph a
where exists(select 1 from #1 where RelatedNode=a.Node And Level=@level) And
Not exists(select 1 from #1 where Node=a.Node)
union
--反向
select a.RelatedNode,a.Node,@level 1
From RelationGraph a
where exists(select 1 from #1 where RelatedNode=a.RelatedNode And Level=@level) And
Not exists(select 1 from #1 where Node=a.RelatedNode)
set @Node_WhileFlag=sign(@@rowcount)
end
if @RelatedNode_WhileFlag >0
begin
insert into #2 ( Node, RelatedNode, Level )
--正向
select a.Node,a.RelatedNode,@level 1
From RelationGraph a
where exists(select 1 from #2 where RelatedNode=a.Node And Level=@level) And
Not exists(select 1 from #2 where Node=a.Node)
union
--反向
select a.RelatedNode,a.Node,@level 1
From RelationGraph a
where exists(select 1 from #2 where RelatedNode=a.RelatedNode And Level=@level) And
Not exists(select 1 from #2 where Node=a.RelatedNode)
set @RelatedNode_WhileFlag=sign(@@rowcount)
end
select @level =1
end
While_Out:
--下面是构造返回的结果路径
if object_id('tempdb..#Path1') Is not null Drop Table #Path1
if object_id('tempdb..#Path2') Is not null Drop Table #Path2
;with cte_path1 As
(
select a.Node,a.RelatedNode,Level,convert(nvarchar(2000),a.Node ' -> ' a.RelatedNode) As RelationGraphPath,Convert(smallint,1) As PathLevel From #1 a where exists(select 1 from #2 where RelatedNode=a.RelatedNode)
union all
select b.Node,a.RelatedNode,b.Level,convert(nvarchar(2000),b.Node ' -> ' a.RelationGraphPath) As RelationGraphPath ,Convert(smallint,a.PathLevel 1) As PathLevel
from cte_path1 a
inner join #1 b on b.RelatedNode=a.Node
and b.Level=a.Level-1
)
select * Into #Path1 from cte_path1
;with cte_path2 As
(
select a.Node,a.RelatedNode,Level,convert(nvarchar(2000),a.Node) As RelationGraphPath,Convert(smallint,1) As PathLevel From #2 a where exists(select 1 from #1 where RelatedNode=a.RelatedNode)
union all
select b.Node,a.RelatedNode,b.Level,convert(nvarchar(2000),a.RelationGraphPath ' -> ' b.Node) As RelationGraphPath ,Convert(smallint,a.PathLevel 1)
from cte_path2 a
inner join #2 b on b.RelatedNode=a.Node
and b.Level=a.Level-1
)
select * Into #Path2 from cte_path2
;with cte_result As
(
select a.RelationGraphPath ' -> ' b.RelationGraphPath As RelationGraphPath,a.PathLevel b.PathLevel -1 As StopCount,rank() over(order by a.PathLevel b.PathLevel) As Result_row
From #Path1 a
inner join #Path2 b on b.RelatedNode=a.RelatedNode
and b.Level=1
where a.Level=1
)
select distinct RelationGraphPath,StopCount From cte_result where Result_row=1
go
上面的存储过程,主要分为两大部分,第1部分是实现如何搜索,第2部分实现如何构造返回结果。其中第1部分的具体相关代码根据前面的具体相关方法2,通过@Node 和 @RelatedNode 两个节点向外层搜索,每次搜索返回的节点都保存至临时表#1和#2,再判断临时表#1和#2有没有出现切点,假如如果出现就说明已找到最短的路径(经过多节点数最少),否则就继续循环搜索,直到循环至最大的搜索深度(@MaxLevel smallint=100)或找到切点。要是到100层都没搜索到切点,将放弃搜索。这里使用最大可搜索深度@MaxLevel,目的是控制由于数据量大可能会导致性能差,因为在这里数据量与搜索性能成反比。具体相关代码中还说到一个正向和反向搜索,主要是相对Node 和 RelatedNode来说,它们两者互为参照对象,进行向外搜索使用。
下面是存储过程的执行:
复制具体相关代码 具体相关代码如下: